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Abstract—Hybrid positioning frameworks use various sensors
and algorithms to enhance positioning through different types
of fusion. The optimisation of the fusion process requires the
testing of different algorithm parameters and optimal low-
as well as high-level sensor fusion techniques. The presented
OpenHPS open source hybrid positioning system is a modular
framework managing individual nodes in a process network,
which can be configured to support concrete positioning use
cases or to adapt to specific technologies. This modularity allows
developers to rapidly develop and optimise their positioning
system while still providing them the flexibility to add their
own algorithms. In this paper we discuss how a process network
developed with OpenHPS can be used to realise a customisable
indoor positioning solution with an offline and online stage, and
how it can be adapted for high accuracy or low latency. For the
demonstration and validation of our indoor positioning solution,
we further compiled a publicly available dataset containing data
from WLAN access points, BLE beacons as well as several
trajectories that include IMU data.

Index Terms—hybrid positioning, indoor positioning, process
network, fingerprinting, pedestrian dead reckoning

I. INTRODUCTION

Knowing the real-time position of a person or object is
a common problem that can be solved via a broad range
of technologies and algorithms. Existing modular positioning
frameworks offer location providers to handle the positioning
for a given technology, but they are often not flexible in
adapting the flow and low-level fusion of information in
order to fulfil specific requirements. For indoor positioning
systems, the use cases can range from asset tracking in
large warehouses, location context in implicit human-computer
interaction, to the use of a positioning system for company-
wide contact tracing during an epidemic [1]. Depending on the
requirements for the sampled position, different positioning
and fusion techniques might offer the best results.

Our OpenHPS system [2] aims to address the existing
lack of control by providing a modular low-level positioning
framework that can easily be modified depending on the
requirements and available technologies. OpenHPS is designed
to support a variety of implementations, ranging from indoor
positioning to object tracking on a smaller scale such as a
game board. These implementations are realised by using a
process network design for controlling how sensor data is
managed. Each node in the process network represents an
operation in the flow of sensor information, ranging from the

processing of data to controlling how the data is fused for
generating an output position. Despite its low-level process
network design, OpenHPS has been developed with the goal of
position processing to support developers who want to develop
a customised positioning solution. It solves common issues
such as transformations, low- and high-level sensor fusion,
data storage and offers common positioning algorithms.

In this paper, we explore and demonstrate the use of
OpenHPS for an indoor positioning use case based on com-
monly used positioning methods for Wi-Fi signals, Bluetooth
beacons and pedestrian dead reckoning. Our main contribution
is the introduction of the flexible OpenHPS framework and its
use for indoor positioning, with several modular components
that can be utilised for this particular use case. We showcase
and validate the framework based on a new indoor position-
ing dataset containing a data collection of 220 anonymised
WLAN access points (including SSID grouping and broad-
casting frequency), 11 BLE beacons with a known position
and IMU data (i.e. orientation, acceleration, rotation rate and
magnetometer data) recorded at 140 reference positions in
four directions. In addition to this dataset, we provide several
trajectories and a GeoJSON feature set with polygonal areas
of interest.

II. RELATED WORK

In the research field of indoor positioning and naviga-
tion, a broad range of hybrid positioning frameworks exist.
Hightower et al. [3] presented the seven layer location stack
based on five design principles. These principles offer a good
baseline for the requirements of an extensible hybrid position-
ing system. MiddleWhere [4] is such a framework, using a
similar layered structure of sensor data, context reasoning and
semantic activities through a location-based service. It allows
developers to focus on positioning within a reference space,
such as a room, without the need to work with geometric
coordinates. MiddleWhere uses the concept of symbolic loca-
tions to define region- and object-based locations. Positioning
technologies are added through adapters, but only provide an
interface to the system as a completed positioning method. The
fusion of these technologies is done by a fixed probabilistic
reasoning of the determined symbolic locations.

Most positioning systems have a specific design goal.
LearnLoc [5] is a hybrid system that aims for power-efficient
indoor positioning rather than obtaining the most accurate978-1-6654-0402-0/21/$31.00 © 2021 IEEE
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position. Bekkelien and Deriaz [6] introduced the Global
Positioning Module (GPM) framework for in- and outdoor
positioning. GPM provides a uniform interface to different
position providers which are fused in a kernel that selects the
position based on criteria such as probability, accuracy and
precision. The position providers and kernels are implemented
on a high level of abstraction, allowing no room for developers
to choose different algorithms or fusion techniques. However,
their methodology of using different criteria to determine the
fusion offers some flexibility to implement a system for a
particular use case.

Similarly, Ficco and Russo [7] presented a technology-
independent hybrid positioning middleware called HyLocSys
that also accepts some position criteria. Position estimators,
representing different technologies, provide positions when a
user requests their current position. Sensor fusion combines
these estimated positions into a final response. With the
middleware being an extension of the JSR-179 [8] specifi-
cation, these pull requests accept criteria such as the preferred
response time and expected accuracy. In addition to the
geographical positions offered by most frameworks, HyLocSys
provides geometric, symbolic and hybrid location models.
Symbolic locations represent abstract places such as buildings,
floors and rooms that are positioned relatively to each other.

While not being considered a positioning framework, the
IndoorLoc Platform [9] offers a web-based user interface for
evaluating different positioning algorithms with configurable
parameters. The offered flexibility is limited to fixed datasets
and k-NN or probabilistic fingerprinting, but shows the need
for experimenting with and configuring a positioning system.

One of the more widely used systems is the Robotics Oper-
ating System (ROS) [10]. While ROS handles many different
robotics aspects other than positioning, it provides relevant
features such as multi-sensor fusion for indoor positioning and
transform frames [11] that can be used to transform sensor data
to the reference coordinate system used by the robot.

Last but not least, IndoorAtlas [12] is a well established
Platform as a Service (PaaS) solution for combining Wi-Fi,
GPS, Bluetooth beacons, dead reckoning and geomagnetic
positioning. The focus is on allowing end users to author and
configure the system for an indoor environment.

Our proposed OpenHPS positioning system should adhere
and support specifications such as WGS 84 [13] when working
with geographical positions. However, unlike most of the
related work discussed in this section, we also want to support
use cases with non-geometric coordinates. On the other hand,
the work by Ficco and Russo [7] offers a good type of hybrid
location, but it is still heavily focused on geometric positions.
With our framework we want to implement symbolic locations
on a level that still allows non-geometric positions.

Positioning methods and algorithms are often represented
under the term providers that are optionally combined via
high-level decision fusion [14]. In our framework, we want
to separate providers into generic algorithms and positioning
methods that can easily be interchanged. This does not only
improve the extensibility, but also enables low-level sensor

fusion. Similar to the Indoor Location1 framework offering
Android and iOS position providers, we provide all compo-
nents as open source. However, with our OpenHPS framework
we do not want to limit ourselves to smartphone applications
and black box position providers.

The Geolocation API [15], JSR-179 and HyLocSys allow
for the specification of accuracy or some other criteria when
requesting a position. Unlike high-level APIs that hide the
underlying technologies, OpenHPS addresses developers with
an understanding of the available hardware and positioning
techniques that influence these criteria. Additional layers of
abstraction can simplify the configuration, but should still
allow developers to optimise the algorithm parameters.

The persistence of landmarks, as realised in JSR-179, is an
important requirement that is extended to fingerprinting infor-
mation and cached position storage in OpenHPS. This cache
allows positioning algorithms to use historical information.

III. OPENHPS FRAMEWORK

OpenHPS2 is an open source hybrid positioning framework
implemented in TypeScript. The system is split into individual
modules that provide extra functionality on top of a core
component. The core component of the OpenHPS framework
is a process network designed to sample sensor data to a
position while other components extend this core function-
ality with different data storage types, positioning techniques,
abstractions and communication nodes.

Core Component

Positioning Techniques
(e.g. fingerprinting)

Abstractions
(e.g. location-based services)

Data Storage
(e.g. MongoDB)

Communication
(e.g. socket connection)

Fig. 1: Component architecture of OpenHPS

A general overview of the main categories of components
provided by OpenHPS is given in Fig. 1. The core component
can be extended with additional communication nodes that
handle data transfers from hardware or to remote parts of the
process network. Positioning algorithms such as fingerprinting
techniques or SLAM might expand on the basic data types and
processing nodes provided by the core API. Additional data
storage options such as MongoDB or MobilityDB [16] can
persist these data types, trajectories or custom data generated
by parts of the process network. This custom data might
range from processed fingerprints to historical information
from signal filter nodes. Finally, components can abstract parts
of the underlying process network or data storage. An example
of such an abstraction is a location-based service offering a
high-level API for the current position of an object.

1https://www.indoorlocation.io
2https://openhps.org

https://www.indoorlocation.io
https://openhps.org
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The core OpenHPS API requires all data types that are
handled by the process network to be serialisable. This enables
us to scale and decentralise parts of the network to multiple
(remote) processes or (web) workers, bypassing the single-
threaded limitation of JavaScript.

A. Design Principles

OpenHPS has been designed around four main actors that
can be identified in most positioning systems:

• Tracked actor: This is an actor that can be tracked
during the online positioning stage. In indoor position-
ing, it might represent the user or object that is being
tracked in an environment. Data that is processed in
the network should have a reliable type and content.
We process DataObjects encapsulated in DataFrames
(see Section III-C), providing a defined scope on how
generic parts of our network should handle information.

• Tracking actor: This actor is responsible for tracking
a tracked actor. It can be identical to the tracked actor
(e.g. a user’s smartphone) or some separate technology
such as a camera tracking the movement of a user.
This actor has the highest priority and slow consumers
or computing actors must not result in outdated sen-
sor information. Rather, developers should be given the
opportunity to control what happens with any potential
overflow of information that cannot be processed timely.

• Calibration actor: Some positioning methods require a
calibration or setup before they can be used. Unlike the
tracked actor, the purpose of a calibration actor is to train
and calibrate how a tracking actor will be used during the
system’s online stage.

• Computing actor: The computing actor is responsible
for providing the final position output. It combines the
data generated by one or multiple tracking actors and pro-
cesses the data by using specific positioning algorithms
to providing the absolute position of tracked actors.

Note that our four actors can be mapped to layers and design
principles in the location stack [3]. Furthermore, computing
actors represent an important component of the framework, as
they are responsible for the processing and fusion of sensor
data from multiple sensors.

B. Process Network

The process network consists of nodes that handle the
creation, processing and storage of data frames. We identify
three main types of nodes:

• Source node: A source generates data and normally
represents a sensor generating data automatically or on
request.

• Processing node: A processing node provides an abstrac-
tion on top of the push and pull functionality to simplify
the processing of sensor data or data objects.

• Sink node: A sink node stores data objects upon receiv-
ing a data frame. Once saved, an event is sent upstream
to indicate that the processing of the frame and its objects
has been completed.

In addition to these three main nodes, the core component
offers process shapes for controlling the flow and fusion of
data. The component-based structure of the OpenHPS frame-
work enables extensions and abstractions of the three main
nodes to support additional sensor sources and processing
techniques. Future components might offer nodes that perform
context reasoning and fusion.

Our framework uses a push-pull-based stream for sampling
sensor data based on existing stream-based software architec-
tures. However, we optimised the framework for processing
and handling positioning data. Source nodes that actively
produce information, such as an IMU sensor, can push in-
formation. Pull request actions trigger a push when a node
is able to respond to the request. This behaviour is similar to
Akka Streams [17], but unlike reactive streams our framework
does not use the behaviour to implement back pressure in
the system. Both the push and pull requests can be executed
asynchronously, similar to reactive streams [18].

ProcessingNode ProcessingNodeSourceNode SinkNode

push(data)
push(data')

push(data'')

resolve push

resolve push

completed data''completed data'' completed data''

resolve push

Fig. 2: Pushing data in the process network

Fig. 2 shows data being pushed by a source node and
handled by two processing nodes. Once a downstream node is
ready with the frame, it resolves the promise signalling to the
upstream node that new data can be accepted. Sink nodes emit
an event upstream, indicating that data has been persisted.

ProcessingNode ProcessingNodeSourceNode SinkNode

pull()pull()pull()
push(data)

resolve push

resolve pull

push(data)
push(data)

resolve pull resolve pull

resolve push
resolve push

completed data''completed data'' completed data''

Fig. 3: Pulling data in the process network

Other than a push-based source, Fig. 3 illustrates a sink
initiating a pull. This pull will be responded to by pushing
new data, similar as shown earlier in Fig. 2. While we use the
pull terminology, this action indicates a request to an upstream
node to push new information if available and does not respond
directly with the data. This allows us to process data frames
sequentially, as required to perform optimal positioning.

C. DataFrame and DataObject
A DataObject is the tracking or tracked actor in our system.

These uniquely identified objects can contain a position and
multiple relative positions to other objects or landmarks.



2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

DataFrame

source
DataObject

  uid: "phone",
  position: { 
    x: 8, y: 7,
    orientation: { ... }
  },
  linearVelocity: { x: 0, y: 0, z: 0 }
  relativePositions: [
    { obj: "WAP_1", rssi: -80 },
    { obj: "WAP_2", rssi: - 65 },
    { obj: "BLE_1", distance: 1 }
  ]

uid timestamp

WAP_1
WLANObject

  uid: "WAP_1",
  frequency: 2452

BLE_1
RFObject

  uid: "BLE_1",
  position: {
    x: 10, y: 8
  }

WAP_2
WLANObject

  uid: "WAP_2",
  frequency: 5180

Accelerometer GyroscopeMagnetometer

Fig. 4: Data frame containing objects and sensor data

Data objects are encapsulated in DataFrames generated by
a source node. This timestamped frame contains data objects
pertaining to the source that generated the frame. The structure
of a fictional data frame generated by a smartphone application
is outlined in Fig. 4. The source object (indicated in green)
contains all previously persisted data such as the latest position
and velocity of the sensor generating the data frame. In our
illustrative example, we include three relative positions to
other landmarks. The source node includes the data objects
that are used inside these relative positions (data objects in
yellow). Raw sensory data such as acceleration or images in
a video stream are included in the data frame and can be ac-
cessed by processing nodes. Data frames and data objects can
be extended to contain different data. A WLANObject named
“WAP 1” is an extended data object containing information
about the transmission frequency as shown in Fig. 4.

D. Services
Each OpenHPS positioning model enables the use of ser-

vices that can be accessed by nodes in the process network
for data storage or the shared (pre)processing of information.

1) Data Service: A data service is a shared service for
persisting information in the process network. Source nodes
can access these services to load data objects and sink nodes to
persist data objects. Data services can be compared to the stor-
age capabilities of JSR-179 [8]. In addition to the persistence
of data objects, nodes can store data about individual data
objects. This allows filter nodes (e.g. an SMA or Kalman filter)
to store historical information of a data object that is only
relevant for one particular node in the process network.

2) Fingerprinting Service: In the @openhps/fingerprinting3

component we provide a data object service for handling fin-
gerprints. Other than persisting these fingerprints, the service
can preprocess fingerprints by aggregating, interpolating or
extracting features.

3) Location-based Service (LBS): A positioning model can
be extended with a location-based service that uses the process
network to offer a push- or pull-based LBS with similar high-
level functionality such as the Geolocation API [15].

3https://github.com/OpenHPS/openhps-fingerprinting

1 const service = new LocationBasedService<
2 DataObject,
3 GeographicalPosition
4 >();
5

6 // Use the service in a positioning model
7 ModelBuilder.create()
8 .addService(service)
9 .from(/* ... */).via(/* ... */).build(/* ... */);

10

11 // Get the current position (cache or pull)
12 service.getCurrentPosition("myuser").then(pos => {
13 console.log(pos);
14 }, { maximumAge: 60000 });
15 // Watch position changes updated by the model
16 service.watchPosition("myuser", pos => {
17 console.log(pos);
18 }, { forceUpdate: false });

Listing 1: Location-based service

Listing 1 illustrates how a location-based service is added
to the model (line 8). The current position of a certain object
can be requested by using a simple API call of this service
(lines 12–14). If the position is outdated, a pull is performed
on the positioning model regardless of its construction or
complexity.

E. Position and Spaces

Similar to other frameworks [19], [20], we distinguish
between absolute and relative positions. Absolute positions
represent physical 2D, 3D or geographical positions within
a certain area, while relative positions represent a position
relative to another data object or landmark (e.g. relative
distance, angle, velocity or signal strength). Each position
might contain a timestamp on when the position was last
updated, an orientation represented as a quaternion and both
the linear and angular velocity.

Each absolute position is relative to a reference space,
supporting the transformation of a position, orientation and
velocity to a global reference space specified by the developer.
Transformation spaces can be dynamically manipulated by
other nodes in the process network, allowing processing nodes
to control or calibrate how sensor data should be trans-
formed. This behaviour is similar to the transform package
of ROS [11], where the data of sensors on moveable parts of
a robot can be transformed to a single coordinate space.

Symbolic spaces represent a high-level API extension of
reference spaces aimed for indoor environments. They add the
following capabilities on top of reference spaces:

• Spatial hierarchy: Spatial hierarchy is already supported
in reference spaces using the parent identifier. However,
symbolic spaces add boundaries that can be used to
indicate whether an object is inside a space.

• Graph connectivity: The ability to connect spaces such
as rooms, hallways, staircases and floors in order to
support navigation applications or improve position es-
timation.

https://github.com/OpenHPS/openhps-fingerprinting
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• Geocoding: Symbolic spaces can be converted to an
absolute position in the global reference space. Similarly,
an absolute position can be converted to the most likely
symbolic space through reverse geocoding.

• GeoJSON export: Spaces might be exported to
GeoJSON [21] features, aiding the storage and query
capabilities in MongoDB or other data services.

Symbolic spaces can be treated as symbolic locations [4],
[7], [22] with the ability to be converted to absolute positions.

1 const building = new Building("PL9")
2 .setBounds({
3 topLeft: new GeographicalPosition(50.8203, 4.3922),
4 width: 46.275, height: 37.27, rotation: -34.04
5 });
6 const floor = new Floor("PL9.3")
7 .setBuilding(building)
8 .setFloorNumber(3);
9 const office = new Room("PL9.3.58")

10 .setFloor(floor)
11 .setBounds([
12 new Absolute2DPosition(4.75, 31.25),
13 new Absolute2DPosition(8.35, 37.02),
14 ]);
15

16 const object = new DataObject("myuser");
17 // Set the position relative to the floor space
18 object.setPosition(
19 new Absolute2DPosition(6.55, 34.135, LengthUnit.METER)
20 ), floor);
21 // Get the position relative to the global reference space
22 office.getPosition(); // (lat: 50.8204, lng: 4.3922)
23 // Get the position relative to the floor
24 office.getPosition(floor); // (6.55, 34.135)

Listing 2: Symbolic space creation and usage

Listing 2 shows the creation and usage of three sym-
bolic spaces used in the evaluation of our indoor positioning
demonstration presented later in Section IV-B. Boundaries can
be specified through different methods. In this example, the
boundaries of a building are defined via the top left corner,
the width and height of the building in metres as well as the
building’s orientation (angle) relative to grid north. For the
boundaries of the floor and a specific office room, we provided
two boundary points that create a rectangular symbolic space.
Alternatively, polygonal shapes can be used to define the
boundaries.

While we have presented the core components and main
features of the OpenHPS framework, additional technical
details and examples can be found in [2].

IV. INDOOR POSITIONING DEMONSTRATION

In order to demonstrate the use of OpenHPS for indoor
positioning, we created a process network with a server, two
Android applications and a socket connection for transmitting
sensor data to a server and feedback back from the server.

The server is implemented based on node.js4 and handles
the storage of fingerprints and position processing, while the

4https://nodejs.org/en/

two applications have been developed using React Native5.
In our @openhps/react-native6 component we provide several
source nodes for interfacing with native sensors.

The complete positioning model is shown in Fig. 5. Two
socket source nodes on the server (indicated in green) handle
the server endpoints for the offline and online stage applica-
tion. In the offline stage, features from objects within data
frames are stored as fingerprints.

The fingerprint service used to store fingerprints is shared
with the online stage. For the scope of our evaluation, we used
various positioning methods ranging from BLE multilateration
and cell identification using 11 BLE beacons, WLAN finger-
printing and BLE fingerprinting. A high-level position fusion
node fuses the positions based on their accuracy [14]. Finally,
the calculated position is sent back to the mobile application
through the socket sink node (orange) as indicated in Fig. 5.
The effectiveness of OpenHPS as a hybrid positioning solution
is validated with two scenarios in Sections IV-B and IV-C.

1 GraphBuilder.create()
2 .from(new IMUSourceNode({
3 source: new DataObject(phoneUID),
4 interval: 20, // 50 Hz (20ms interval)
5 sensors: [
6 SensorType.ACCELEROMETER, SensorType.ORIENTATION
7 ]
8 }))
9 .via(new SMAFilterNode(

10 frame => [frame, "acceleration"], { taps: 10 }
11 ))
12 .via(new GravityProcessingNode({
13 method: GravityProcessingMethod.ABSOLUTE_ORIENTATION
14 }))
15 .via(new PedometerProcessingNode({
16 minConsecutiveSteps: 1, stepSize: 0.40
17 }))
18 .to("pedometer-output")

Listing 3: Graph shape for pedestrian dead reckoning

In the online stage we use the acceleration and orientation
from an IMU source node to perform pedestrian dead reckon-
ing as illustrated in Listing 3. A simple moving average filter
on the acceleration will smooth the raw sensor data. Next, a
gravity processing node uses the orientation and acceleration
to extract the gravity and linear acceleration. Finally, we use
a windowed average peak counting algorithm to perform step
detection. The dead reckoning is fused with the feedback from
the server—indicated by the purple fusion node of the online-
stage application in Fig. 5—after which it is shown to the user
and stored via a data object service. This finalised position is
fed back to the position fusion node with a delay of 150ms and
the velocity applied. Feedback from the server might contain
a delayed position due to the time it takes to complete a scan
and process it on the server and therefore we apply the last
known velocity to the position returned from the server.

5https://reactnative.dev
6https://github.com/OpenHPS/openhps-react-native

https://nodejs.org/en/
https://reactnative.dev
https://github.com/OpenHPS/openhps-react-native
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Fig. 5: Positioning model for server, offline and online application

A. Dataset

For the evaluation or our positioning model, we created a
fingerprinting dataset of a single floor in the building of our
research lab [23]. A visual representation of our dataset is
shown in Fig. 6. The dataset was recorded with a calibration
application collecting information from WLAN access points,
BLE beacons with a known position (blue) and an IMU sensor.
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Fig. 6: Fingerprinting dataset data points

Each of the 110 training data points (red) and 30 test
data points (green) have been collected in four directions (up,
right, bottom and left) by standing still for 20 seconds with
a phone held at chest height. In our dataset, we provide the
raw data of all WLAN scans, BLE advertisements as well as
IMU data including device orientation, acceleration, rotation
rate and magnetometer data. Each detected access point is
anonymised, but we provide information about SSID groups
and the frequency of the access point. This high-dimensional
information allows developers to use the dataset to experiment

with different fingerprinting techniques that can potentially
take the orientation and signal propagation into account for
different Wi-Fi broadcasting frequencies [24].

We use the symbolic space abstraction that has been intro-
duced in Section III-E to create symbolic spaces for the rooms,
corridors two lobbies and toilets. These symbolic spaces will
be used to determine the hit rate and are illustrated in Fig. 7
exported as GeoJSON polygonal features.

Room
Corridor
Zone
Floor

Fig. 7: Symbolic spaces in GeoJSON format

B. Test Data Points

Our first evaluation of stationary test data points uses
WLAN and BLE information to determine the position and
symbolic location. For this test we used aggregated RSSI (re-
ceived signal strength indicator) results.

We configured the WLAN fingerprinting on our server
positioning model shown in Listing 4. On lines 2–5, we con-
figure the preprocessing fingerprinting service. The flexibility



2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

1 ModelBuilder.create()
2 .addService(new FingerprintService(
3 new MemoryDataService(Fingerprint), {
4 classifier: "wlan", defaultValue: -95
5 }))
6 .addShape(GraphBuilder.create() // ONLINE MODE
7 .from(/* ... */)
8 .via(new KNNFingerprintingNode({
9 weighted: true, k: 4, classifier: "wlan",

10 weightFunction: WeightFunction.SQUARE,
11 similarityFunction: DistanceFunction.EUCLIDEAN
12 }))
13 .to(/* ... */))
14 .addShape(GraphBuilder.create() // OFFLINE MODE
15 .from(/* ... */)
16 .via(new FingerprintingNode({
17 classifier: "wlan"
18 }))
19 .to(/* ... */))
20 .build();

Listing 4: Positioning with fingerprinting parameters

of our system allows developers to choose how fingerprints
are stored, normalised and aggregated. If needed, this service
can be replaced with a custom pre-processing algorithm.
Lines 16–18 show the creation of an offline fingerprinting
node. This is an object processing node extracting features
of objects and storing them in the fingerprinting service. The
online stage (lines 8–12) can use processed fingerprints to
obtain a position. In this particular test, we used a weighted
k-NN algorithm that is configured similarly to the parameters
used by RTLS@UM in the EvAAL competition of 2015 [25].
The use of general parametrised processing nodes offers great
flexibility for developers to tweak the positioning system. In
this evaluation we removed the pedestrian dead reckoning and
feedback loop from our positioning model.

Table I shows the average, minimum and maximum error
for different positioning techniques, along with the standard
deviation and failed points. Failed points indicate test reference
points for which the positioning technique was not capable to
determine a position. In the case of BLE positioning, these are
the positions where not enough BLE beacons were in range.
The symbolic space hit rate represents the amount of test data
points that were assigned to the correct symbolic space.

The modularity of our framework allows developers to
rapidly adapt and test the sensor fusion for a specific use case.
Other than trying to determine the most accurate average error,
the goal of a positioning system might be to get the most
accurate hit rate, increase the update frequency or minimise
the energy consumption. In our chosen sensor fusion, we adapt
the accuracy of a certain positioning technique based on the
available information (e.g. BLE beacons in range) to achieve
a higher symbolic space hit rate.

C. Trajectories

In addition to stationary data points, we included several
trajectories in our dataset that include IMU data on top of
the WLAN and BLE data. The process network in our online

TABLE I: Average, minimum and maximum X/Y position error
compared to the fused position

Positioning Techniques

WLAN Fingerprinting
(k=4)

failed points 0
average error 1.23 m
minimum error 0.01 m
maximum error 4.77 m
standard deviation 1.04 m
symbolic space hit rate 95.82%

BLE Fingerprinting
(k=3)

failed points 6
average error 3.23 m
minimum error 0.17 m
maximum error 15.39 m
standard deviation 2.69 m
symbolic space hit rate 80.83%

BLE Multilateration

failed points 12
average error 4.92 m
minimum error 0.74 m
maximum error 19.26 m
standard deviation 3.50 m
symbolic space hit rate 52.50%

Sensor Fusion
(WLAN + BLE)

failed points 0
average error 1.37 m
minimum error 0.01 m
maximum error 9.75 m
standard deviation 1.26 m
symbolic space hit rate 96.67%

application sends the WLAN and BLE data to the server,
where it is processed similarly to the test data points in
Section IV-B, while the IMU data is used locally in the
application to perform pedestrian dead reckoning. Trajectory
sensor information was collected by keeping the phone at chest
height while performing the trajectory at a normal walking
pace. Other than the stationary points, the update frequency
and accuracy is more important than the symbolic hit rate.

Sensor fusion
WLAN & BLE Cell-ID
Expected trajectory
Trajectory start

Fig. 8: Test trajectory with WLAN, BLE and IMU data
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The expected trajectory is shown in red in Fig. 8. We
determined the error by comparing the last known position
with the actual expected position in the trajectory. While
WLAN positioning and BLE cell identification can show a
visual representation of the complete route, it only consists of
13 data points that are not synchronised with the user’s real-
time position. This delay is due to the scan duration and the
processing time on the server.

TABLE II: Sensor fusion comparison for test trajectory

Positioning Techniques

WLAN + BLE

average error 3.29 m
maximum error 9.60 m
standard deviation 2.09 m
average update frequency 3.04 s

WLAN + BLE + IMU

average error 1.26 m
maximum error 3.10 m
standard deviation 0.77 m
average update frequency 0.52 s

In Table II we show the maximum and average error for our
test trajectory with and without IMU data. The delay caused
in the fingerprinting in combination with the slow update fre-
quency causes a larger error compared to the real-time position
during the trajectory. Note that flexibility of OpenHPS allows
developers to experiment with different positioning algorithms
and fusion techniques to further optimise the system.

V. CONCLUSION AND FUTURE WORK

We presented the OpenHPS framework and its use as an
indoor positioning solution. We used a server with socket end-
points that stores fingerprints and fuses WLAN and BLE data
to a predicted position that is transmitted back to the mobile
application where it is fused with processed IMU data. We
have illustrated the modularity with our symbolic spaces that
build on top of the OpenHPS core component to provide sym-
bolic locations, similar to HyLocSys [7]. Different from re-
lated hybrid positioning frameworks offering specific location
providers, we demonstrated how nodes in the OpenHPS pro-
cess network can be constructed and configured to support
various technologies.

For our indoor positioning demonstration, we recorded a
new open source dataset of a single floor in our research lab
with help of the OpenHPS framework. The dataset contains
WLAN, BLE and IMU sensor data in different orientations and
multiple walking trajectories. Using this dataset, we showed
how the process network can easily be adapted to optimise the
behaviour of the positioning algorithms for symbolic space hit
rate or the latency in a trajectory. In future work we plan to
further increase the flexibility by supporting different types of
users, ranging from developers to less-technical end users who
want to use OpenHPS for asset tracking. While our symbolic
spaces support multiple floors, we might further explore the
challenges of performing floor detection in a building. Overall,
OpenHPS has proven its flexibility in handling an indoor
positioning use case with modular layers of abstraction such
as symbolic spaces or high-level API endpoints.
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